Flexible complementarity solvers for large-scale applications

نویسندگان

  • Steven J. Benson
  • Todd S. Munson
چکیده

Discretizations of infinite-dimensional variational inequalities lead to linear and nonlinear complementarity problems with many degrees of freedom. To solve these problems in a parallel computing environment, we propose two active-set methods that solve only one linear system of equations per iteration. The linear solver, preconditioner, and matrix structures can be chosen by the user for a particular application to achieve high parallel performance. The parallel scalability of these methods is demonstrated for some discretizations of infinite-dimensional variational inequalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Large Scale Mixed Complementarity Problem Solvers

This paper provides a means for comparing various computer codes for solving large scale mixed complementarity problems. We discuss inadequacies in how solvers are currently compared, and present a testing environment that addresses these inadequacies. This testing environment consists of a library of test problems, along with GAMS and MATLAB interfaces that allow these problems to be easily ac...

متن کامل

An extended mathematical programming framework

Extended mathematical programs are collections of functions and variables joined together using specific optimization and complementarity primitives. This paper outlines a mechanism to describe such an extended mathematical program by means of annotating the existing relationships within a model to facilitate higher level structure identification. The structures, which often involve constraints...

متن کامل

A computational study of the use of an optimization-based method for simulating large multibody systems

The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemketype algorithms and solvers such as the P...

متن کامل

Expressing Complementarity Problems in an Algebraic Modeling Language and Communicating Them to Solvers

Diverse problems in optimization, engineering, and economics have natural formulations in terms of complementarity conditions, which state (in their simplest form) that either a certain nonnegative variable must be zero or a corresponding inequality must hold with equality, or both. A variety of algorithms have been devised for solving problems expressed in terms of complementarity conditions. ...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2006